SHOGUN  5.0.0
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules
List of all members | Public Member Functions | Public Attributes | Protected Member Functions | Protected Attributes
COnlineSVMSGD Class Reference

Detailed Description

class OnlineSVMSGD

Definition at line 35 of file OnlineSVMSGD.h.

Inheritance diagram for COnlineSVMSGD:
[legend]

Public Member Functions

 MACHINE_PROBLEM_TYPE (PT_BINARY)
 
 COnlineSVMSGD ()
 
 COnlineSVMSGD (float64_t C)
 
 COnlineSVMSGD (float64_t C, CStreamingDotFeatures *traindat)
 
virtual ~COnlineSVMSGD ()
 
virtual EMachineType get_classifier_type ()
 
virtual bool train (CFeatures *data=NULL)
 
void set_C (float64_t c_neg, float64_t c_pos)
 
float64_t get_C1 ()
 
float64_t get_C2 ()
 
void set_epochs (int32_t e)
 
int32_t get_epochs ()
 
void set_lambda (float64_t l)
 
float64_t get_lambda ()
 
void set_bias_enabled (bool enable_bias)
 
bool get_bias_enabled ()
 
void set_regularized_bias_enabled (bool enable_bias)
 
bool get_regularized_bias_enabled ()
 
void set_loss_function (CLossFunction *loss_func)
 
CLossFunctionget_loss_function ()
 
const char * get_name () const
 
virtual void get_w (float32_t *&dst_w, int32_t &dst_dims)
 
virtual void get_w (float64_t *&dst_w, int32_t &dst_dims)
 
virtual SGVector< float32_tget_w ()
 
virtual void set_w (float32_t *src_w, int32_t src_w_dim)
 
virtual void set_w (float64_t *src_w, int32_t src_w_dim)
 
virtual void set_bias (float32_t b)
 
virtual float32_t get_bias ()
 
virtual void set_features (CStreamingDotFeatures *feat)
 
virtual CRegressionLabelsapply_regression (CFeatures *data=NULL)
 
virtual CBinaryLabelsapply_binary (CFeatures *data=NULL)
 
virtual float64_t apply_one (int32_t vec_idx)
 get output for example "vec_idx" More...
 
virtual float32_t apply_one (float32_t *vec, int32_t len)
 
virtual float32_t apply_to_current_example ()
 
virtual CStreamingDotFeaturesget_features ()
 
virtual void start_train ()
 
virtual void stop_train ()
 
virtual void train_example (CStreamingDotFeatures *feature, float64_t label)
 
virtual CLabelsapply (CFeatures *data=NULL)
 
virtual CMulticlassLabelsapply_multiclass (CFeatures *data=NULL)
 
virtual CStructuredLabelsapply_structured (CFeatures *data=NULL)
 
virtual CLatentLabelsapply_latent (CFeatures *data=NULL)
 
virtual void set_labels (CLabels *lab)
 
virtual CLabelsget_labels ()
 
void set_max_train_time (float64_t t)
 
float64_t get_max_train_time ()
 
void set_solver_type (ESolverType st)
 
ESolverType get_solver_type ()
 
virtual void set_store_model_features (bool store_model)
 
virtual bool train_locked (SGVector< index_t > indices)
 
virtual CLabelsapply_locked (SGVector< index_t > indices)
 
virtual CBinaryLabelsapply_locked_binary (SGVector< index_t > indices)
 
virtual CRegressionLabelsapply_locked_regression (SGVector< index_t > indices)
 
virtual CMulticlassLabelsapply_locked_multiclass (SGVector< index_t > indices)
 
virtual CStructuredLabelsapply_locked_structured (SGVector< index_t > indices)
 
virtual CLatentLabelsapply_locked_latent (SGVector< index_t > indices)
 
virtual void data_lock (CLabels *labs, CFeatures *features)
 
virtual void post_lock (CLabels *labs, CFeatures *features)
 
virtual void data_unlock ()
 
virtual bool supports_locking () const
 
bool is_data_locked () const
 
virtual EProblemType get_machine_problem_type () const
 
virtual CSGObjectshallow_copy () const
 
virtual CSGObjectdeep_copy () const
 
virtual bool is_generic (EPrimitiveType *generic) const
 
template<class T >
void set_generic ()
 
template<>
void set_generic ()
 
template<>
void set_generic ()
 
template<>
void set_generic ()
 
template<>
void set_generic ()
 
template<>
void set_generic ()
 
template<>
void set_generic ()
 
template<>
void set_generic ()
 
template<>
void set_generic ()
 
template<>
void set_generic ()
 
template<>
void set_generic ()
 
template<>
void set_generic ()
 
template<>
void set_generic ()
 
template<>
void set_generic ()
 
template<>
void set_generic ()
 
template<>
void set_generic ()
 
void unset_generic ()
 
virtual void print_serializable (const char *prefix="")
 
virtual bool save_serializable (CSerializableFile *file, const char *prefix="")
 
virtual bool load_serializable (CSerializableFile *file, const char *prefix="")
 
void set_global_io (SGIO *io)
 
SGIOget_global_io ()
 
void set_global_parallel (Parallel *parallel)
 
Parallelget_global_parallel ()
 
void set_global_version (Version *version)
 
Versionget_global_version ()
 
SGStringList< char > get_modelsel_names ()
 
void print_modsel_params ()
 
char * get_modsel_param_descr (const char *param_name)
 
index_t get_modsel_param_index (const char *param_name)
 
void build_gradient_parameter_dictionary (CMap< TParameter *, CSGObject * > *dict)
 
bool has (const std::string &name) const
 
template<typename T >
bool has (const Tag< T > &tag) const
 
template<typename T , typename U = void>
bool has (const std::string &name) const
 
template<typename T >
void set (const Tag< T > &_tag, const T &value)
 
template<typename T , typename U = void>
void set (const std::string &name, const T &value)
 
template<typename T >
get (const Tag< T > &_tag) const
 
template<typename T , typename U = void>
get (const std::string &name) const
 
virtual void update_parameter_hash ()
 
virtual bool parameter_hash_changed ()
 
virtual bool equals (CSGObject *other, float64_t accuracy=0.0, bool tolerant=false)
 
virtual CSGObjectclone ()
 

Public Attributes

SGIOio
 
Parallelparallel
 
Versionversion
 
Parameterm_parameters
 
Parameterm_model_selection_parameters
 
Parameterm_gradient_parameters
 
uint32_t m_hash
 

Protected Member Functions

void calibrate (int32_t max_vec_num=1000)
 
virtual bool train_machine (CFeatures *data=NULL)
 
SGVector< float64_tapply_get_outputs (CFeatures *data)
 
virtual bool train_require_labels () const
 
virtual void store_model_features ()
 
virtual bool is_label_valid (CLabels *lab) const
 
virtual void load_serializable_pre () throw (ShogunException)
 
virtual void load_serializable_post () throw (ShogunException)
 
virtual void save_serializable_pre () throw (ShogunException)
 
virtual void save_serializable_post () throw (ShogunException)
 
template<typename T >
void register_param (Tag< T > &_tag, const T &value)
 
template<typename T >
void register_param (const std::string &name, const T &value)
 

Protected Attributes

int32_t w_dim
 
float32_tw
 
float32_t bias
 
CStreamingDotFeaturesfeatures
 
float64_t m_max_train_time
 
CLabelsm_labels
 
ESolverType m_solver_type
 
bool m_store_model_features
 
bool m_data_locked
 

Constructor & Destructor Documentation

default constructor

Definition at line 31 of file OnlineSVMSGD.cpp.

constructor

Parameters
Cconstant C

Definition at line 37 of file OnlineSVMSGD.cpp.

constructor

Parameters
Cconstant C
traindattraining features

Definition at line 46 of file OnlineSVMSGD.cpp.

~COnlineSVMSGD ( )
virtual

Definition at line 56 of file OnlineSVMSGD.cpp.

Member Function Documentation

CLabels * apply ( CFeatures data = NULL)
virtualinherited

apply machine to data if data is not specified apply to the current features

Parameters
data(test)data to be classified
Returns
classified labels

Definition at line 152 of file Machine.cpp.

CBinaryLabels * apply_binary ( CFeatures data = NULL)
virtualinherited

apply linear machine to data for binary classification problems

Parameters
data(test)data to be classified
Returns
classified labels

Reimplemented from CMachine.

Definition at line 36 of file OnlineLinearMachine.cpp.

SGVector< float64_t > apply_get_outputs ( CFeatures data)
protectedinherited

get real outputs

Parameters
datafeatures to compute outputs
Returns
outputs

Definition at line 48 of file OnlineLinearMachine.cpp.

CLatentLabels * apply_latent ( CFeatures data = NULL)
virtualinherited

apply machine to data in means of latent problem

Reimplemented in CLinearLatentMachine.

Definition at line 232 of file Machine.cpp.

CLabels * apply_locked ( SGVector< index_t indices)
virtualinherited

Applies a locked machine on a set of indices. Error if machine is not locked

Parameters
indicesindex vector (of locked features) that is predicted

Definition at line 187 of file Machine.cpp.

CBinaryLabels * apply_locked_binary ( SGVector< index_t indices)
virtualinherited

applies a locked machine on a set of indices for binary problems

Reimplemented in CKernelMachine.

Definition at line 238 of file Machine.cpp.

CLatentLabels * apply_locked_latent ( SGVector< index_t indices)
virtualinherited

applies a locked machine on a set of indices for latent problems

Definition at line 266 of file Machine.cpp.

CMulticlassLabels * apply_locked_multiclass ( SGVector< index_t indices)
virtualinherited

applies a locked machine on a set of indices for multiclass problems

Definition at line 252 of file Machine.cpp.

CRegressionLabels * apply_locked_regression ( SGVector< index_t indices)
virtualinherited

applies a locked machine on a set of indices for regression problems

Reimplemented in CKernelMachine.

Definition at line 245 of file Machine.cpp.

CStructuredLabels * apply_locked_structured ( SGVector< index_t indices)
virtualinherited

applies a locked machine on a set of indices for structured problems

Definition at line 259 of file Machine.cpp.

CMulticlassLabels * apply_multiclass ( CFeatures data = NULL)
virtualinherited
virtual float64_t apply_one ( int32_t  vec_idx)
virtualinherited

get output for example "vec_idx"

Reimplemented from CMachine.

Definition at line 173 of file OnlineLinearMachine.h.

float32_t apply_one ( float32_t vec,
int32_t  len 
)
virtualinherited

apply linear machine to one vector

Parameters
vecfeature vector
lenlength of vector
Returns
classified label

Definition at line 84 of file OnlineLinearMachine.cpp.

CRegressionLabels * apply_regression ( CFeatures data = NULL)
virtualinherited

apply linear machine to data for regression problems

Parameters
data(test)data to be classified
Returns
classified labels

Reimplemented from CMachine.

Definition at line 42 of file OnlineLinearMachine.cpp.

CStructuredLabels * apply_structured ( CFeatures data = NULL)
virtualinherited

apply machine to data in means of SO classification problem

Reimplemented in CLinearStructuredOutputMachine.

Definition at line 226 of file Machine.cpp.

float32_t apply_to_current_example ( )
virtualinherited

apply linear machine to vector currently being processed

Returns
classified label

Definition at line 89 of file OnlineLinearMachine.cpp.

void build_gradient_parameter_dictionary ( CMap< TParameter *, CSGObject * > *  dict)
inherited

Builds a dictionary of all parameters in SGObject as well of those of SGObjects that are parameters of this object. Dictionary maps parameters to the objects that own them.

Parameters
dictdictionary of parameters to be built.

Definition at line 630 of file SGObject.cpp.

void calibrate ( int32_t  max_vec_num = 1000)
protected

calibrate

Parameters
max_vec_numMaximum number of vectors to calibrate using (optional) if set to -1, tries to calibrate using all vectors

Definition at line 167 of file OnlineSVMSGD.cpp.

CSGObject * clone ( )
virtualinherited

Creates a clone of the current object. This is done via recursively traversing all parameters, which corresponds to a deep copy. Calling equals on the cloned object always returns true although none of the memory of both objects overlaps.

Returns
an identical copy of the given object, which is disjoint in memory. NULL if the clone fails. Note that the returned object is SG_REF'ed

Definition at line 747 of file SGObject.cpp.

void data_lock ( CLabels labs,
CFeatures features 
)
virtualinherited

Locks the machine on given labels and data. After this call, only train_locked and apply_locked may be called

Only possible if supports_locking() returns true

Parameters
labslabels used for locking
featuresfeatures used for locking

Reimplemented in CKernelMachine.

Definition at line 112 of file Machine.cpp.

void data_unlock ( )
virtualinherited

Unlocks a locked machine and restores previous state

Reimplemented in CKernelMachine.

Definition at line 143 of file Machine.cpp.

CSGObject * deep_copy ( ) const
virtualinherited

A deep copy. All the instance variables will also be copied.

Definition at line 231 of file SGObject.cpp.

bool equals ( CSGObject other,
float64_t  accuracy = 0.0,
bool  tolerant = false 
)
virtualinherited

Recursively compares the current SGObject to another one. Compares all registered numerical parameters, recursion upon complex (SGObject) parameters. Does not compare pointers!

May be overwritten but please do with care! Should not be necessary in most cases.

Parameters
otherobject to compare with
accuracyaccuracy to use for comparison (optional)
tolerantallows linient check on float equality (within accuracy)
Returns
true if all parameters were equal, false if not

Definition at line 651 of file SGObject.cpp.

T get ( const Tag< T > &  _tag) const
inherited

Getter for a class parameter, identified by a Tag. Throws an exception if the class does not have such a parameter.

Parameters
_tagname and type information of parameter
Returns
value of the parameter identified by the input tag

Definition at line 367 of file SGObject.h.

T get ( const std::string &  name) const
inherited

Getter for a class parameter, identified by a name. Throws an exception if the class does not have such a parameter.

Parameters
namename of the parameter
Returns
value of the parameter corresponding to the input name and type

Definition at line 388 of file SGObject.h.

virtual float32_t get_bias ( )
virtualinherited

get bias

Returns
bias

Definition at line 140 of file OnlineLinearMachine.h.

bool get_bias_enabled ( )

check if bias is enabled

Returns
if bias is enabled

Definition at line 129 of file OnlineSVMSGD.h.

float64_t get_C1 ( )

get C1

Returns
C1

Definition at line 87 of file OnlineSVMSGD.h.

float64_t get_C2 ( )

get C2

Returns
C2

Definition at line 93 of file OnlineSVMSGD.h.

virtual EMachineType get_classifier_type ( )
virtual

get classifier type

Returns
classifier type OnlineSVMSGD

Reimplemented from CMachine.

Definition at line 63 of file OnlineSVMSGD.h.

int32_t get_epochs ( )

get epochs

Returns
the number of training epochs

Definition at line 105 of file OnlineSVMSGD.h.

virtual CStreamingDotFeatures* get_features ( )
virtualinherited

get features

Returns
features

Definition at line 200 of file OnlineLinearMachine.h.

SGIO * get_global_io ( )
inherited

get the io object

Returns
io object

Definition at line 268 of file SGObject.cpp.

Parallel * get_global_parallel ( )
inherited

get the parallel object

Returns
parallel object

Definition at line 310 of file SGObject.cpp.

Version * get_global_version ( )
inherited

get the version object

Returns
version object

Definition at line 323 of file SGObject.cpp.

CLabels * get_labels ( )
virtualinherited

get labels

Returns
labels

Definition at line 76 of file Machine.cpp.

float64_t get_lambda ( )

get lambda

Returns
the regularization parameter lambda

Definition at line 117 of file OnlineSVMSGD.h.

CLossFunction* get_loss_function ( )

Return the loss function

Returns
loss function as CLossFunction*

Definition at line 153 of file OnlineSVMSGD.h.

virtual EProblemType get_machine_problem_type ( ) const
virtualinherited

returns type of problem machine solves

Reimplemented in CNeuralNetwork, CRandomForest, CCHAIDTree, CCARTree, and CBaseMulticlassMachine.

Definition at line 299 of file Machine.h.

float64_t get_max_train_time ( )
inherited

get maximum training time

Returns
maximum training time

Definition at line 87 of file Machine.cpp.

SGStringList< char > get_modelsel_names ( )
inherited
Returns
vector of names of all parameters which are registered for model selection

Definition at line 531 of file SGObject.cpp.

char * get_modsel_param_descr ( const char *  param_name)
inherited

Returns description of a given parameter string, if it exists. SG_ERROR otherwise

Parameters
param_namename of the parameter
Returns
description of the parameter

Definition at line 555 of file SGObject.cpp.

index_t get_modsel_param_index ( const char *  param_name)
inherited

Returns index of model selection parameter with provided index

Parameters
param_namename of model selection parameter
Returns
index of model selection parameter with provided name, -1 if there is no such

Definition at line 568 of file SGObject.cpp.

const char* get_name ( ) const
virtual
Returns
object name

Reimplemented from COnlineLinearMachine.

Definition at line 156 of file OnlineSVMSGD.h.

bool get_regularized_bias_enabled ( )

check if regularized bias is enabled

Returns
if regularized bias is enabled

Definition at line 141 of file OnlineSVMSGD.h.

ESolverType get_solver_type ( )
inherited

get solver type

Returns
solver

Definition at line 102 of file Machine.cpp.

virtual void get_w ( float32_t *&  dst_w,
int32_t &  dst_dims 
)
virtualinherited

get w

Parameters
dst_wstore w in this argument
dst_dimsdimension of w

Definition at line 65 of file OnlineLinearMachine.h.

virtual void get_w ( float64_t *&  dst_w,
int32_t &  dst_dims 
)
virtualinherited

Get w as a _new_ float64_t array

Parameters
dst_wstore w in this argument
dst_dimsdimension of w

Definition at line 78 of file OnlineLinearMachine.h.

virtual SGVector<float32_t> get_w ( )
virtualinherited

get w

Returns
weight vector

Definition at line 91 of file OnlineLinearMachine.h.

bool has ( const std::string &  name) const
inherited

Checks if object has a class parameter identified by a name.

Parameters
namename of the parameter
Returns
true if the parameter exists with the input name

Definition at line 289 of file SGObject.h.

bool has ( const Tag< T > &  tag) const
inherited

Checks if object has a class parameter identified by a Tag.

Parameters
tagtag of the parameter containing name and type information
Returns
true if the parameter exists with the input tag

Definition at line 301 of file SGObject.h.

bool has ( const std::string &  name) const
inherited

Checks if a type exists for a class parameter identified by a name.

Parameters
namename of the parameter
Returns
true if the parameter exists with the input name and type

Definition at line 312 of file SGObject.h.

bool is_data_locked ( ) const
inherited
Returns
whether this machine is locked

Definition at line 296 of file Machine.h.

bool is_generic ( EPrimitiveType *  generic) const
virtualinherited

If the SGSerializable is a class template then TRUE will be returned and GENERIC is set to the type of the generic.

Parameters
genericset to the type of the generic if returning TRUE
Returns
TRUE if a class template.

Definition at line 329 of file SGObject.cpp.

virtual bool is_label_valid ( CLabels lab) const
protectedvirtualinherited

check whether the labels is valid.

Subclasses can override this to implement their check of label types.

Parameters
labthe labels being checked, guaranteed to be non-NULL

Reimplemented in CNeuralNetwork, CCARTree, CCHAIDTree, CGaussianProcessRegression, and CBaseMulticlassMachine.

Definition at line 348 of file Machine.h.

bool load_serializable ( CSerializableFile file,
const char *  prefix = "" 
)
virtualinherited

Load this object from file. If it will fail (returning FALSE) then this object will contain inconsistent data and should not be used!

Parameters
filewhere to load from
prefixprefix for members
Returns
TRUE if done, otherwise FALSE

Definition at line 402 of file SGObject.cpp.

void load_serializable_post ( )
throw (ShogunException
)
protectedvirtualinherited

Can (optionally) be overridden to post-initialize some member variables which are not PARAMETER::ADD'ed. Make sure that at first the overridden method BASE_CLASS::LOAD_SERIALIZABLE_POST is called.

Exceptions
ShogunExceptionwill be thrown if an error occurs.

Reimplemented in CKernel, CWeightedDegreePositionStringKernel, CList, CAlphabet, CLinearHMM, CGaussianKernel, CInverseMultiQuadricKernel, CCircularKernel, and CExponentialKernel.

Definition at line 459 of file SGObject.cpp.

void load_serializable_pre ( )
throw (ShogunException
)
protectedvirtualinherited

Can (optionally) be overridden to pre-initialize some member variables which are not PARAMETER::ADD'ed. Make sure that at first the overridden method BASE_CLASS::LOAD_SERIALIZABLE_PRE is called.

Exceptions
ShogunExceptionwill be thrown if an error occurs.

Reimplemented in CDynamicArray< T >, CDynamicArray< float64_t >, CDynamicArray< float32_t >, CDynamicArray< int32_t >, CDynamicArray< char >, CDynamicArray< bool >, and CDynamicObjectArray.

Definition at line 454 of file SGObject.cpp.

MACHINE_PROBLEM_TYPE ( PT_BINARY  )

returns type of problem machine solves

bool parameter_hash_changed ( )
virtualinherited
Returns
whether parameter combination has changed since last update

Definition at line 295 of file SGObject.cpp.

virtual void post_lock ( CLabels labs,
CFeatures features 
)
virtualinherited

post lock

Definition at line 287 of file Machine.h.

void print_modsel_params ( )
inherited

prints all parameter registered for model selection and their type

Definition at line 507 of file SGObject.cpp.

void print_serializable ( const char *  prefix = "")
virtualinherited

prints registered parameters out

Parameters
prefixprefix for members

Definition at line 341 of file SGObject.cpp.

void register_param ( Tag< T > &  _tag,
const T &  value 
)
protectedinherited

Registers a class parameter which is identified by a tag. This enables the parameter to be modified by set() and retrieved by get(). Parameters can be registered in the constructor of the class.

Parameters
_tagname and type information of parameter
valuevalue of the parameter

Definition at line 439 of file SGObject.h.

void register_param ( const std::string &  name,
const T &  value 
)
protectedinherited

Registers a class parameter which is identified by a name. This enables the parameter to be modified by set() and retrieved by get(). Parameters can be registered in the constructor of the class.

Parameters
namename of the parameter
valuevalue of the parameter along with type information

Definition at line 452 of file SGObject.h.

bool save_serializable ( CSerializableFile file,
const char *  prefix = "" 
)
virtualinherited

Save this object to file.

Parameters
filewhere to save the object; will be closed during returning if PREFIX is an empty string.
prefixprefix for members
Returns
TRUE if done, otherwise FALSE

Definition at line 347 of file SGObject.cpp.

void save_serializable_post ( )
throw (ShogunException
)
protectedvirtualinherited

Can (optionally) be overridden to post-initialize some member variables which are not PARAMETER::ADD'ed. Make sure that at first the overridden method BASE_CLASS::SAVE_SERIALIZABLE_POST is called.

Exceptions
ShogunExceptionwill be thrown if an error occurs.

Reimplemented in CKernel.

Definition at line 469 of file SGObject.cpp.

void save_serializable_pre ( )
throw (ShogunException
)
protectedvirtualinherited

Can (optionally) be overridden to pre-initialize some member variables which are not PARAMETER::ADD'ed. Make sure that at first the overridden method BASE_CLASS::SAVE_SERIALIZABLE_PRE is called.

Exceptions
ShogunExceptionwill be thrown if an error occurs.

Reimplemented in CKernel, CDynamicArray< T >, CDynamicArray< float64_t >, CDynamicArray< float32_t >, CDynamicArray< int32_t >, CDynamicArray< char >, CDynamicArray< bool >, and CDynamicObjectArray.

Definition at line 464 of file SGObject.cpp.

void set ( const Tag< T > &  _tag,
const T &  value 
)
inherited

Setter for a class parameter, identified by a Tag. Throws an exception if the class does not have such a parameter.

Parameters
_tagname and type information of parameter
valuevalue of the parameter

Definition at line 328 of file SGObject.h.

void set ( const std::string &  name,
const T &  value 
)
inherited

Setter for a class parameter, identified by a name. Throws an exception if the class does not have such a parameter.

Parameters
namename of the parameter
valuevalue of the parameter along with type information

Definition at line 354 of file SGObject.h.

virtual void set_bias ( float32_t  b)
virtualinherited

set bias

Parameters
bnew bias

Definition at line 131 of file OnlineLinearMachine.h.

void set_bias_enabled ( bool  enable_bias)

set if bias shall be enabled

Parameters
enable_biasif bias shall be enabled

Definition at line 123 of file OnlineSVMSGD.h.

void set_C ( float64_t  c_neg,
float64_t  c_pos 
)

set C

Parameters
c_negnew C constant for negatively labeled examples
c_posnew C constant for positively labeled examples

Definition at line 81 of file OnlineSVMSGD.h.

void set_epochs ( int32_t  e)

set epochs

Parameters
enew number of training epochs

Definition at line 99 of file OnlineSVMSGD.h.

virtual void set_features ( CStreamingDotFeatures feat)
virtualinherited

set features

Parameters
featfeatures to set

Definition at line 149 of file OnlineLinearMachine.h.

void set_generic ( )
inherited

Definition at line 74 of file SGObject.cpp.

void set_generic ( )
inherited

Definition at line 79 of file SGObject.cpp.

void set_generic ( )
inherited

Definition at line 84 of file SGObject.cpp.

void set_generic ( )
inherited

Definition at line 89 of file SGObject.cpp.

void set_generic ( )
inherited

Definition at line 94 of file SGObject.cpp.

void set_generic ( )
inherited

Definition at line 99 of file SGObject.cpp.

void set_generic ( )
inherited

Definition at line 104 of file SGObject.cpp.

void set_generic ( )
inherited

Definition at line 109 of file SGObject.cpp.

void set_generic ( )
inherited

Definition at line 114 of file SGObject.cpp.

void set_generic ( )
inherited

Definition at line 119 of file SGObject.cpp.

void set_generic ( )
inherited

Definition at line 124 of file SGObject.cpp.

void set_generic ( )
inherited

Definition at line 129 of file SGObject.cpp.

void set_generic ( )
inherited

Definition at line 134 of file SGObject.cpp.

void set_generic ( )
inherited

Definition at line 139 of file SGObject.cpp.

void set_generic ( )
inherited

Definition at line 144 of file SGObject.cpp.

void set_generic ( )
inherited

set generic type to T

void set_global_io ( SGIO io)
inherited

set the io object

Parameters
ioio object to use

Definition at line 261 of file SGObject.cpp.

void set_global_parallel ( Parallel parallel)
inherited

set the parallel object

Parameters
parallelparallel object to use

Definition at line 274 of file SGObject.cpp.

void set_global_version ( Version version)
inherited

set the version object

Parameters
versionversion object to use

Definition at line 316 of file SGObject.cpp.

void set_labels ( CLabels lab)
virtualinherited

set labels

Parameters
lablabels

Reimplemented in CNeuralNetwork, CGaussianProcessMachine, CCARTree, CStructuredOutputMachine, CRelaxedTree, and CMulticlassMachine.

Definition at line 65 of file Machine.cpp.

void set_lambda ( float64_t  l)

set lambda

Parameters
lvalue of regularization parameter lambda

Definition at line 111 of file OnlineSVMSGD.h.

void set_loss_function ( CLossFunction loss_func)

Set the loss function to use

Parameters
loss_funcobject derived from CLossFunction

Definition at line 61 of file OnlineSVMSGD.cpp.

void set_max_train_time ( float64_t  t)
inherited

set maximum training time

Parameters
tmaximimum training time

Definition at line 82 of file Machine.cpp.

void set_regularized_bias_enabled ( bool  enable_bias)

set if regularized bias shall be enabled

Parameters
enable_biasif regularized bias shall be enabled

Definition at line 135 of file OnlineSVMSGD.h.

void set_solver_type ( ESolverType  st)
inherited

set solver type

Parameters
stsolver type

Definition at line 97 of file Machine.cpp.

void set_store_model_features ( bool  store_model)
virtualinherited

Setter for store-model-features-after-training flag

Parameters
store_modelwhether model should be stored after training

Definition at line 107 of file Machine.cpp.

virtual void set_w ( float32_t src_w,
int32_t  src_w_dim 
)
virtualinherited

set w

Parameters
src_wnew w
src_w_dimdimension of new w

Definition at line 104 of file OnlineLinearMachine.h.

virtual void set_w ( float64_t src_w,
int32_t  src_w_dim 
)
virtualinherited

Set weight vector from a float64_t vector

Parameters
src_wnew w
src_w_dimdimension of new w

Definition at line 118 of file OnlineLinearMachine.h.

CSGObject * shallow_copy ( ) const
virtualinherited

A shallow copy. All the SGObject instance variables will be simply assigned and SG_REF-ed.

Reimplemented in CGaussianKernel.

Definition at line 225 of file SGObject.cpp.

virtual void start_train ( )
virtualinherited

Start training of the online machine, sub-class should override this if some preparations are to be done

Reimplemented in COnlineLibLinear.

Definition at line 212 of file OnlineLinearMachine.h.

virtual void stop_train ( )
virtualinherited

Stop training of the online machine, sub-class should override this if some clean up is needed

Reimplemented in COnlineLibLinear.

Definition at line 217 of file OnlineLinearMachine.h.

virtual void store_model_features ( )
protectedvirtualinherited

Stores feature data of underlying model. After this method has been called, it is possible to change the machine's feature data and call apply(), which is then performed on the training feature data that is part of the machine's model.

Base method, has to be implemented in order to allow cross-validation and model selection.

NOT IMPLEMENTED! Has to be done in subclasses

Reimplemented in CKernelMachine, CKNN, CLinearMachine, CLinearMulticlassMachine, CKMeansBase, CTreeMachine< T >, CTreeMachine< ConditionalProbabilityTreeNodeData >, CTreeMachine< RelaxedTreeNodeData >, CTreeMachine< id3TreeNodeData >, CTreeMachine< VwConditionalProbabilityTreeNodeData >, CTreeMachine< CARTreeNodeData >, CTreeMachine< C45TreeNodeData >, CTreeMachine< CHAIDTreeNodeData >, CTreeMachine< NbodyTreeNodeData >, CGaussianProcessMachine, CHierarchical, CDistanceMachine, CKernelMulticlassMachine, and CLinearStructuredOutputMachine.

Definition at line 335 of file Machine.h.

virtual bool supports_locking ( ) const
virtualinherited
Returns
whether this machine supports locking

Reimplemented in CKernelMachine.

Definition at line 293 of file Machine.h.

bool train ( CFeatures data = NULL)
virtual

train classifier

Parameters
datatraining data (parameter can be avoided if distance or kernel-based classifiers are used and distance/kernels are initialized with train data)
Returns
whether training was successful

Reimplemented from CMachine.

Definition at line 68 of file OnlineSVMSGD.cpp.

virtual void train_example ( CStreamingDotFeatures feature,
float64_t  label 
)
virtualinherited

train on one example

Parameters
featurethe feature object containing the current example. Note that get_next_example is already called so relevalent methods like dot() and dense_dot() can be directly called. WARN: this function should only process ONE example, and get_next_example() should NEVER be called here. Use the label passed in the 2nd parameter, instead of get_label() from feature, because sometimes the features might not have associated labels or the caller might want to provide some other labels.
labellabel of this example

Reimplemented in COnlineLibLinear.

Definition at line 228 of file OnlineLinearMachine.h.

virtual bool train_locked ( SGVector< index_t indices)
virtualinherited

Trains a locked machine on a set of indices. Error if machine is not locked

NOT IMPLEMENTED

Parameters
indicesindex vector (of locked features) that is used for training
Returns
whether training was successful

Reimplemented in CKernelMachine.

Definition at line 239 of file Machine.h.

bool train_machine ( CFeatures data = NULL)
protectedvirtualinherited

Train classifier

Parameters
dataTraining data, can be avoided if already initialized with it
Returns
Whether training was successful

Reimplemented from CMachine.

Reimplemented in CVowpalWabbit.

Definition at line 94 of file OnlineLinearMachine.cpp.

virtual bool train_require_labels ( ) const
protectedvirtualinherited

whether train require labels

Reimplemented from CMachine.

Definition at line 249 of file OnlineLinearMachine.h.

void unset_generic ( )
inherited

unset generic type

this has to be called in classes specializing a template class

Definition at line 336 of file SGObject.cpp.

void update_parameter_hash ( )
virtualinherited

Updates the hash of current parameter combination

Definition at line 281 of file SGObject.cpp.

Member Data Documentation

float32_t bias
protectedinherited

bias

Definition at line 257 of file OnlineLinearMachine.h.

CStreamingDotFeatures* features
protectedinherited

features

Definition at line 259 of file OnlineLinearMachine.h.

SGIO* io
inherited

io

Definition at line 537 of file SGObject.h.

bool m_data_locked
protectedinherited

whether data is locked

Definition at line 370 of file Machine.h.

Parameter* m_gradient_parameters
inherited

parameters wrt which we can compute gradients

Definition at line 552 of file SGObject.h.

uint32_t m_hash
inherited

Hash of parameter values

Definition at line 555 of file SGObject.h.

CLabels* m_labels
protectedinherited

labels

Definition at line 361 of file Machine.h.

float64_t m_max_train_time
protectedinherited

maximum training time

Definition at line 358 of file Machine.h.

Parameter* m_model_selection_parameters
inherited

model selection parameters

Definition at line 549 of file SGObject.h.

Parameter* m_parameters
inherited

parameters

Definition at line 546 of file SGObject.h.

ESolverType m_solver_type
protectedinherited

solver type

Definition at line 364 of file Machine.h.

bool m_store_model_features
protectedinherited

whether model features should be stored after training

Definition at line 367 of file Machine.h.

Parallel* parallel
inherited

parallel

Definition at line 540 of file SGObject.h.

Version* version
inherited

version

Definition at line 543 of file SGObject.h.

float32_t* w
protectedinherited

w

Definition at line 255 of file OnlineLinearMachine.h.

int32_t w_dim
protectedinherited

dimension of w

Definition at line 253 of file OnlineLinearMachine.h.


The documentation for this class was generated from the following files:

SHOGUN Machine Learning Toolbox - Documentation