SHOGUN  v2.0.0
DataGenerator.cpp
Go to the documentation of this file.
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License as published by
4  * the Free Software Foundation; either version 3 of the License, or
5  * (at your option) any later version.
6  *
7  * Written (W) 2012 Heiko Strathmann
8  */
9
10 #include <shogun/lib/config.h>
11
15
16 using namespace shogun;
17
19 {
20  init();
21 }
22
24 {
25
26 }
27
28 void CDataGenerator::init()
29 {
30 }
31
33  index_t dim, float64_t mean_shift,
34  SGMatrix<float64_t> target)
35 {
36  /* evtl. allocate space */
38  dim, 2*m, target);
39
40  /* fill matrix with normal data */
41  for (index_t i=0; i<2*m; ++i)
42  {
43  for (index_t j=0; j<dim; ++j)
44  result(j,i)=CMath::randn_double();
45
46  /* mean shift for second half */
47  if (i>=m)
48  result(0,i)+=mean_shift;
49  }
50
51  return result;
52 }
53
55  float64_t d, float64_t angle, SGMatrix<float64_t> target)
56 {
57  /* evtl. allocate space */
59  2, m, target);
60
61  /* rotation matrix */
63  rot(0, 0)=CMath::cos(angle);
64  rot(0, 1)=-CMath::sin(angle);
65  rot(1, 0)=CMath::sin(angle);
66  rot(1, 1)=CMath::cos(angle);
67
68  /* generate signal in each dimension which is an equal mixture of two
69  * Gaussians */
70  for (index_t i=0; i<m; ++i)
71  {
72  result(0,i)=CMath::randn_double() + (CMath::random(0, 1) ? d : -d);
73  result(1,i)=CMath::randn_double() + (CMath::random(0, 1) ? d : -d);
74  }
75
76  /* rotate result */
77  if (angle)
78  result=SGMatrix<float64_t>::matrix_multiply(rot, result);
79
80  return result;
81 }
82 #ifdef HAVE_LAPACK
84 {
85  /* evtl. allocate space */
86  SGMatrix<float64_t> result =
88
89  float64_t grid_distance = 5.0;
90  for (index_t i = 0; i < n; ++i)
91  {
92  SGVector<float64_t> mean(dim);
94
95  mean.zero();
96  for (index_t k = 0; k < dim; ++k)
97  {
98  mean[k] = (i+1)*grid_distance;
99  if (k % (i+1) == 0)
100  mean[k] *= -1;
101  }
102  CGaussian* g = new CGaussian(mean, cov, DIAG);
103  for (index_t j = 0; j < m; ++j)
104  {
105  SGVector<float64_t> v = g->sample();
106  memcpy((result.matrix+j*result.num_rows+i*m*dim), v.vector, dim*sizeof(float64_t));
107  }
108
109  SG_UNREF(g);
110  }
111
112  return result;
113 }
114 #endif /* HAVE_LAPACK */

SHOGUN Machine Learning Toolbox - Documentation