SHOGUN  3.2.1
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
SoftMaxLikelihood.h
Go to the documentation of this file.
1 /*
2  * Copyright (c) The Shogun Machine Learning Toolbox
3  * Written (w) 2014 Parijat Mazumdar
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright notice, this
10  * list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright notice,
12  * this list of conditions and the following disclaimer in the documentation
13  * and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
19  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
21  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
22  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * The views and conclusions contained in the software and documentation are those
27  * of the authors and should not be interpreted as representing official policies,
28  * either expressed or implied, of the Shogun Development Team.
29  */
30 
31 #ifndef _SOFTMAXLIKELIHOOD_H_
32 #define _SOFTMAXLIKELIHOOD_H_
33 
34 #include <shogun/lib/config.h>
35 
36 #ifdef HAVE_EIGEN3
37 
40 
41 namespace shogun
42 {
43 
50 {
51 public:
54 
56  virtual ~CSoftMaxLikelihood();
57 
62  virtual const char* get_name() const { return "SoftMaxLikelihood"; }
63 
79  SGVector<float64_t> s2, const CLabels* lab=NULL) const
80  {
81  SG_ERROR("Not Implemented\n");
82  return SGVector<float64_t>();
83  }
84 
100  SGVector<float64_t> s2, const CLabels* lab=NULL) const
101  {
102  SG_ERROR("Not Implemented\n");
103  return SGVector<float64_t>();
104  }
105 
118  SGVector<float64_t> func) const;
119 
131  const CLabels* lab, SGVector<float64_t> func, index_t i) const;
132 
145  SGVector<float64_t> s2, const CLabels* lab) const
146  {
147  SG_ERROR("Not Implemented\n");
148  return SGVector<float64_t>();
149  }
150 
166  SGVector<float64_t> s2, const CLabels* lab, index_t i) const
167  {
168  SG_ERROR("Not Implemented\n");
169  return -1.0;
170  }
171 
187  SGVector<float64_t> s2, const CLabels* lab, index_t i) const
188  {
189  SG_ERROR("Not Implemented\n");
190  return -1.0;
191  }
192 
197  virtual bool supports_multiclass() const { return true; }
198 
199 private:
208  SGVector<float64_t> get_log_probability_derivative1_f(const CLabels* lab, SGMatrix<float64_t> func) const;
209 
218  SGVector<float64_t> get_log_probability_derivative2_f(SGMatrix<float64_t> func) const;
219 
228  SGVector<float64_t> get_log_probability_derivative3_f(SGMatrix<float64_t> func) const;
229 };
230 }
231 #endif /* HAVE_EIGEN3 */
232 #endif /* _SOFTMAXLIKELIHOOD_H_ */

SHOGUN Machine Learning Toolbox - Documentation