SHOGUN  3.2.1
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
List of all members | Public Member Functions | Public Attributes | Protected Member Functions | Protected Attributes
CDomainAdaptationMulticlassLibLinear Class Reference

Detailed Description

domain adaptation multiclass LibLinear wrapper Source domain is assumed to b

Definition at line 23 of file DomainAdaptationMulticlassLibLinear.h.

Inheritance diagram for CDomainAdaptationMulticlassLibLinear:
Inheritance graph
[legend]

Public Member Functions

 CDomainAdaptationMulticlassLibLinear ()
 CDomainAdaptationMulticlassLibLinear (float64_t target_C, CDotFeatures *target_features, CLabels *target_labels, CLinearMulticlassMachine *source_machine)
virtual ~CDomainAdaptationMulticlassLibLinear ()
virtual CBinaryLabelsget_submachine_outputs (int32_t)
virtual const char * get_name () const
float64_t get_source_bias () const
void set_source_bias (float64_t source_bias)
float64_t get_train_factor () const
void set_train_factor (float64_t train_factor)
CLinearMulticlassMachineget_source_machine () const
void set_source_machine (CLinearMulticlassMachine *source_machine)
void set_C (float64_t C)
float64_t get_C () const
void set_epsilon (float64_t epsilon)
float64_t get_epsilon () const
void set_use_bias (bool use_bias)
bool get_use_bias () const
void set_save_train_state (bool save_train_state)
bool get_save_train_state () const
void set_max_iter (int32_t max_iter)
int32_t get_max_iter () const
void reset_train_state ()
SGVector< int32_t > get_support_vectors () const
void set_features (CDotFeatures *f)
CDotFeaturesget_features () const
virtual void set_labels (CLabels *lab)
bool set_machine (int32_t num, CMachine *machine)
CMachineget_machine (int32_t num) const
virtual float64_t get_submachine_output (int32_t i, int32_t num)
virtual CMulticlassLabelsapply_multiclass (CFeatures *data=NULL)
virtual CMultilabelLabelsapply_multilabel_output (CFeatures *data=NULL, int32_t n_outputs=5)
virtual float64_t apply_one (int32_t vec_idx)
CMulticlassStrategyget_multiclass_strategy () const
CRejectionStrategyget_rejection_strategy () const
void set_rejection_strategy (CRejectionStrategy *rejection_strategy)
EProbHeuristicType get_prob_heuris ()
void set_prob_heuris (EProbHeuristicType prob_heuris)
int32_t get_num_machines () const
virtual EProblemType get_machine_problem_type () const
virtual bool is_label_valid (CLabels *lab) const
virtual bool train (CFeatures *data=NULL)
virtual CLabelsapply (CFeatures *data=NULL)
virtual CBinaryLabelsapply_binary (CFeatures *data=NULL)
virtual CRegressionLabelsapply_regression (CFeatures *data=NULL)
virtual CStructuredLabelsapply_structured (CFeatures *data=NULL)
virtual CLatentLabelsapply_latent (CFeatures *data=NULL)
virtual CLabelsget_labels ()
void set_max_train_time (float64_t t)
float64_t get_max_train_time ()
virtual EMachineType get_classifier_type ()
void set_solver_type (ESolverType st)
ESolverType get_solver_type ()
virtual void set_store_model_features (bool store_model)
virtual bool train_locked (SGVector< index_t > indices)
virtual CLabelsapply_locked (SGVector< index_t > indices)
virtual CBinaryLabelsapply_locked_binary (SGVector< index_t > indices)
virtual CRegressionLabelsapply_locked_regression (SGVector< index_t > indices)
virtual CMulticlassLabelsapply_locked_multiclass (SGVector< index_t > indices)
virtual CStructuredLabelsapply_locked_structured (SGVector< index_t > indices)
virtual CLatentLabelsapply_locked_latent (SGVector< index_t > indices)
virtual void data_lock (CLabels *labs, CFeatures *features)
virtual void post_lock (CLabels *labs, CFeatures *features)
virtual void data_unlock ()
virtual bool supports_locking () const
bool is_data_locked () const
virtual CSGObjectshallow_copy () const
virtual CSGObjectdeep_copy () const
virtual bool is_generic (EPrimitiveType *generic) const
template<class T >
void set_generic ()
void unset_generic ()
virtual void print_serializable (const char *prefix="")
virtual bool save_serializable (CSerializableFile *file, const char *prefix="", int32_t param_version=Version::get_version_parameter())
virtual bool load_serializable (CSerializableFile *file, const char *prefix="", int32_t param_version=Version::get_version_parameter())
DynArray< TParameter * > * load_file_parameters (const SGParamInfo *param_info, int32_t file_version, CSerializableFile *file, const char *prefix="")
DynArray< TParameter * > * load_all_file_parameters (int32_t file_version, int32_t current_version, CSerializableFile *file, const char *prefix="")
void map_parameters (DynArray< TParameter * > *param_base, int32_t &base_version, DynArray< const SGParamInfo * > *target_param_infos)
void set_global_io (SGIO *io)
SGIOget_global_io ()
void set_global_parallel (Parallel *parallel)
Parallelget_global_parallel ()
void set_global_version (Version *version)
Versionget_global_version ()
SGStringList< char > get_modelsel_names ()
void print_modsel_params ()
char * get_modsel_param_descr (const char *param_name)
index_t get_modsel_param_index (const char *param_name)
void build_gradient_parameter_dictionary (CMap< TParameter *, CSGObject * > *dict)
virtual void update_parameter_hash ()
virtual bool parameter_hash_changed ()
virtual bool equals (CSGObject *other, float64_t accuracy=0.0, bool tolerant=false)
virtual CSGObjectclone ()

Public Attributes

SGIOio
Parallelparallel
Versionversion
Parameterm_parameters
Parameterm_model_selection_parameters
Parameterm_gradient_parameters
ParameterMapm_parameter_map
uint32_t m_hash

Protected Member Functions

virtual SGMatrix< float64_tobtain_regularizer_matrix () const
virtual bool train_machine (CFeatures *data=NULL)
virtual bool init_machine_for_train (CFeatures *data)
virtual bool init_machines_for_apply (CFeatures *data)
virtual bool is_ready ()
virtual CMachineget_machine_from_trained (CMachine *machine)
virtual int32_t get_num_rhs_vectors ()
virtual void add_machine_subset (SGVector< index_t > subset)
virtual void remove_machine_subset ()
virtual void store_model_features ()
void init_strategy ()
void clear_machines ()
virtual bool is_acceptable_machine (CMachine *machine)
virtual bool train_require_labels () const
virtual TParametermigrate (DynArray< TParameter * > *param_base, const SGParamInfo *target)
virtual void one_to_one_migration_prepare (DynArray< TParameter * > *param_base, const SGParamInfo *target, TParameter *&replacement, TParameter *&to_migrate, char *old_name=NULL)
virtual void load_serializable_pre () throw (ShogunException)
virtual void load_serializable_post () throw (ShogunException)
virtual void save_serializable_pre () throw (ShogunException)
virtual void save_serializable_post () throw (ShogunException)

Protected Attributes

float64_t m_train_factor
float64_t m_source_bias
CLinearMulticlassMachinem_source_machine
float64_t m_C
float64_t m_epsilon
int32_t m_max_iter
bool m_use_bias
bool m_save_train_state
mcsvm_state * m_train_state
CDotFeaturesm_features
CMulticlassStrategym_multiclass_strategy
CMachinem_machine
CDynamicObjectArraym_machines
float64_t m_max_train_time
CLabelsm_labels
ESolverType m_solver_type
bool m_store_model_features
bool m_data_locked

Constructor & Destructor Documentation

default constructor

Definition at line 18 of file DomainAdaptationMulticlassLibLinear.cpp.

CDomainAdaptationMulticlassLibLinear ( float64_t  target_C,
CDotFeatures target_features,
CLabels target_labels,
CLinearMulticlassMachine source_machine 
)

standard constructor

Parameters
target_CC regularization constant value for target domain
target_featurestarget domain features
target_labelstarget domain labels
source_machinesource domain machine to regularize against

Definition at line 24 of file DomainAdaptationMulticlassLibLinear.cpp.

destructor

Definition at line 87 of file DomainAdaptationMulticlassLibLinear.cpp.

Member Function Documentation

virtual void add_machine_subset ( SGVector< index_t subset)
protectedvirtualinherited

set subset to the features of the machine, deletes old one

Parameters
subsetsubset instance to set

Implements CMulticlassMachine.

Definition at line 152 of file LinearMulticlassMachine.h.

CLabels * apply ( CFeatures data = NULL)
virtualinherited

apply machine to data if data is not specified apply to the current features

Parameters
data(test)data to be classified
Returns
classified labels

Definition at line 160 of file Machine.cpp.

CBinaryLabels * apply_binary ( CFeatures data = NULL)
virtualinherited

apply machine to data in means of binary classification problem

Reimplemented in CKernelMachine, COnlineLinearMachine, CWDSVMOcas, CNeuralNetwork, CLinearMachine, CGaussianProcessClassification, CDomainAdaptationSVMLinear, CDomainAdaptationSVM, CPluginEstimate, and CBaggingMachine.

Definition at line 216 of file Machine.cpp.

CLatentLabels * apply_latent ( CFeatures data = NULL)
virtualinherited

apply machine to data in means of latent problem

Reimplemented in CLinearLatentMachine.

Definition at line 240 of file Machine.cpp.

CLabels * apply_locked ( SGVector< index_t indices)
virtualinherited

Applies a locked machine on a set of indices. Error if machine is not locked

Parameters
indicesindex vector (of locked features) that is predicted

Definition at line 195 of file Machine.cpp.

CBinaryLabels * apply_locked_binary ( SGVector< index_t indices)
virtualinherited

applies a locked machine on a set of indices for binary problems

Reimplemented in CKernelMachine, and CMultitaskLinearMachine.

Definition at line 246 of file Machine.cpp.

CLatentLabels * apply_locked_latent ( SGVector< index_t indices)
virtualinherited

applies a locked machine on a set of indices for latent problems

Definition at line 274 of file Machine.cpp.

CMulticlassLabels * apply_locked_multiclass ( SGVector< index_t indices)
virtualinherited

applies a locked machine on a set of indices for multiclass problems

Definition at line 260 of file Machine.cpp.

CRegressionLabels * apply_locked_regression ( SGVector< index_t indices)
virtualinherited

applies a locked machine on a set of indices for regression problems

Reimplemented in CKernelMachine.

Definition at line 253 of file Machine.cpp.

CStructuredLabels * apply_locked_structured ( SGVector< index_t indices)
virtualinherited

applies a locked machine on a set of indices for structured problems

Definition at line 267 of file Machine.cpp.

CMulticlassLabels * apply_multiclass ( CFeatures data = NULL)
virtualinherited

classify all examples

Returns
resulting labels

Reimplemented from CMachine.

Reimplemented in CGaussianNaiveBayes, CMCLDA, and CQDA.

Definition at line 93 of file MulticlassMachine.cpp.

CMultilabelLabels * apply_multilabel_output ( CFeatures data = NULL,
int32_t  n_outputs = 5 
)
virtualinherited

classify all examples with multiple output

Returns
resulting labels

Definition at line 195 of file MulticlassMachine.cpp.

float64_t apply_one ( int32_t  vec_idx)
virtualinherited

classify one example

Parameters
vec_idx
Returns
label

Reimplemented from CMachine.

Reimplemented in CScatterSVM, and CGaussianNaiveBayes.

Definition at line 283 of file MulticlassMachine.cpp.

CRegressionLabels * apply_regression ( CFeatures data = NULL)
virtualinherited

apply machine to data in means of regression problem

Reimplemented in CKernelMachine, CWDSVMOcas, COnlineLinearMachine, CNeuralNetwork, CCHAIDTree, CStochasticGBMachine, CCARTree, CLinearMachine, CGaussianProcessRegression, and CBaggingMachine.

Definition at line 222 of file Machine.cpp.

CStructuredLabels * apply_structured ( CFeatures data = NULL)
virtualinherited

apply machine to data in means of SO classification problem

Reimplemented in CLinearStructuredOutputMachine.

Definition at line 234 of file Machine.cpp.

void build_gradient_parameter_dictionary ( CMap< TParameter *, CSGObject * > *  dict)
inherited

Builds a dictionary of all parameters in SGObject as well of those of SGObjects that are parameters of this object. Dictionary maps parameters to the objects that own them.

Parameters
dictdictionary of parameters to be built.

Definition at line 1185 of file SGObject.cpp.

void clear_machines ( )
protectedinherited

clear machines

Reimplemented in CNativeMulticlassMachine.

CSGObject * clone ( )
virtualinherited

Creates a clone of the current object. This is done via recursively traversing all parameters, which corresponds to a deep copy. Calling equals on the cloned object always returns true although none of the memory of both objects overlaps.

Returns
an identical copy of the given object, which is disjoint in memory. NULL if the clone fails. Note that the returned object is SG_REF'ed

Definition at line 1302 of file SGObject.cpp.

void data_lock ( CLabels labs,
CFeatures features 
)
virtualinherited

Locks the machine on given labels and data. After this call, only train_locked and apply_locked may be called

Only possible if supports_locking() returns true

Parameters
labslabels used for locking
featuresfeatures used for locking

Reimplemented in CKernelMachine.

Definition at line 120 of file Machine.cpp.

void data_unlock ( )
virtualinherited

Unlocks a locked machine and restores previous state

Reimplemented in CKernelMachine.

Definition at line 151 of file Machine.cpp.

CSGObject * deep_copy ( ) const
virtualinherited

A deep copy. All the instance variables will also be copied.

Definition at line 146 of file SGObject.cpp.

bool equals ( CSGObject other,
float64_t  accuracy = 0.0,
bool  tolerant = false 
)
virtualinherited

Recursively compares the current SGObject to another one. Compares all registered numerical parameters, recursion upon complex (SGObject) parameters. Does not compare pointers!

May be overwritten but please do with care! Should not be necessary in most cases.

Parameters
otherobject to compare with
accuracyaccuracy to use for comparison (optional)
tolerantallows linient check on float equality (within accuracy)
Returns
true if all parameters were equal, false if not

Definition at line 1206 of file SGObject.cpp.

float64_t get_C ( ) const
inherited

get C

Returns
C value

Definition at line 72 of file MulticlassLibLinear.h.

EMachineType get_classifier_type ( )
virtualinherited
float64_t get_epsilon ( ) const
inherited

get epsilon

Returns
epsilon value

Definition at line 85 of file MulticlassLibLinear.h.

CDotFeatures* get_features ( ) const
inherited

get features

Returns
features

Definition at line 87 of file LinearMulticlassMachine.h.

SGIO * get_global_io ( )
inherited

get the io object

Returns
io object

Definition at line 183 of file SGObject.cpp.

Parallel * get_global_parallel ( )
inherited

get the parallel object

Returns
parallel object

Definition at line 224 of file SGObject.cpp.

Version * get_global_version ( )
inherited

get the version object

Returns
version object

Definition at line 237 of file SGObject.cpp.

CLabels * get_labels ( )
virtualinherited

get labels

Returns
labels

Definition at line 84 of file Machine.cpp.

CMachine* get_machine ( int32_t  num) const
inherited

get machine

Parameters
numindex of machine to get
Returns
SVM at number num

Definition at line 74 of file MulticlassMachine.h.

virtual CMachine* get_machine_from_trained ( CMachine machine)
protectedvirtualinherited

construct linear machine from given linear machine

Implements CMulticlassMachine.

Definition at line 137 of file LinearMulticlassMachine.h.

EProblemType get_machine_problem_type ( ) const
virtualinherited

get problem type

Reimplemented from CMachine.

Reimplemented in CCHAIDTree, and CCARTree.

Definition at line 32 of file BaseMulticlassMachine.cpp.

int32_t get_max_iter ( ) const
inherited

get max iter

Returns
max iter value

Definition at line 128 of file MulticlassLibLinear.h.

float64_t get_max_train_time ( )
inherited

get maximum training time

Returns
maximum training time

Definition at line 95 of file Machine.cpp.

SGStringList< char > get_modelsel_names ( )
inherited
Returns
vector of names of all parameters which are registered for model selection

Definition at line 1077 of file SGObject.cpp.

char * get_modsel_param_descr ( const char *  param_name)
inherited

Returns description of a given parameter string, if it exists. SG_ERROR otherwise

Parameters
param_namename of the parameter
Returns
description of the parameter

Definition at line 1101 of file SGObject.cpp.

index_t get_modsel_param_index ( const char *  param_name)
inherited

Returns index of model selection parameter with provided index

Parameters
param_namename of model selection parameter
Returns
index of model selection parameter with provided name, -1 if there is no such

Definition at line 1114 of file SGObject.cpp.

CMulticlassStrategy* get_multiclass_strategy ( ) const
inherited

get the type of multiclass'ness

Returns
multiclass type one vs one etc

Definition at line 114 of file MulticlassMachine.h.

virtual const char* get_name ( ) const
virtual

get name

Reimplemented from CMulticlassLibLinear.

Definition at line 46 of file DomainAdaptationMulticlassLibLinear.h.

int32_t get_num_machines ( ) const
inherited

get number of machines

Returns
number of machines

Definition at line 27 of file BaseMulticlassMachine.cpp.

virtual int32_t get_num_rhs_vectors ( )
protectedvirtualinherited

get number of rhs feature vectors

Implements CMulticlassMachine.

Definition at line 143 of file LinearMulticlassMachine.h.

EProbHeuristicType get_prob_heuris ( )
inherited

get prob output heuristic of multiclass strategy

Definition at line 145 of file MulticlassMachine.h.

CRejectionStrategy* get_rejection_strategy ( ) const
inherited

returns rejection strategy

Returns
rejection strategy

Definition at line 124 of file MulticlassMachine.h.

bool get_save_train_state ( ) const
inherited

get save train state

Returns
save_train_state value

Definition at line 112 of file MulticlassLibLinear.h.

ESolverType get_solver_type ( )
inherited

get solver type

Returns
solver

Definition at line 110 of file Machine.cpp.

float64_t get_source_bias ( ) const

getter for source bias

Returns
source bias

Definition at line 43 of file DomainAdaptationMulticlassLibLinear.cpp.

CLinearMulticlassMachine * get_source_machine ( ) const

getter for source machine

Returns
source machine

Definition at line 63 of file DomainAdaptationMulticlassLibLinear.cpp.

float64_t get_submachine_output ( int32_t  i,
int32_t  num 
)
virtualinherited

get output of i-th submachine for num-th vector

Parameters
inumber of submachine
numnumber of feature vector
Returns
output

Definition at line 80 of file MulticlassMachine.cpp.

CBinaryLabels * get_submachine_outputs ( int32_t  i)
virtual

get submachine outputs

Reimplemented from CMulticlassMachine.

Definition at line 108 of file DomainAdaptationMulticlassLibLinear.cpp.

SGVector< int32_t > get_support_vectors ( ) const
inherited

get support vector indices

Returns
support vector indices

Definition at line 58 of file MulticlassLibLinear.cpp.

float64_t get_train_factor ( ) const

getter for train factor

Returns
train factor

Definition at line 53 of file DomainAdaptationMulticlassLibLinear.cpp.

bool get_use_bias ( ) const
inherited

get use bias

Returns
use_bias value

Definition at line 97 of file MulticlassLibLinear.h.

virtual bool init_machine_for_train ( CFeatures data)
protectedvirtualinherited

init machine for train with setting features

Implements CMulticlassMachine.

Definition at line 96 of file LinearMulticlassMachine.h.

virtual bool init_machines_for_apply ( CFeatures data)
protectedvirtualinherited

init machines for applying with setting features

Implements CMulticlassMachine.

Definition at line 110 of file LinearMulticlassMachine.h.

void init_strategy ( )
protectedinherited

init strategy

Reimplemented in CNativeMulticlassMachine.

Definition at line 65 of file MulticlassMachine.cpp.

virtual bool is_acceptable_machine ( CMachine machine)
protectedvirtualinherited

whether the machine is acceptable in set_machine

Reimplemented in CMulticlassSVM, and CNativeMulticlassMachine.

Definition at line 193 of file MulticlassMachine.h.

bool is_data_locked ( ) const
inherited
Returns
whether this machine is locked

Definition at line 294 of file Machine.h.

bool is_generic ( EPrimitiveType *  generic) const
virtualinherited

If the SGSerializable is a class template then TRUE will be returned and GENERIC is set to the type of the generic.

Parameters
genericset to the type of the generic if returning TRUE
Returns
TRUE if a class template.

Definition at line 243 of file SGObject.cpp.

bool is_label_valid ( CLabels lab) const
virtualinherited

check whether the labels is valid.

Parameters
labthe labels being checked, guaranteed to be non-NULL

Reimplemented from CMachine.

Reimplemented in CCARTree, and CCHAIDTree.

Definition at line 37 of file BaseMulticlassMachine.cpp.

virtual bool is_ready ( )
protectedvirtualinherited

check features availability

Implements CMulticlassMachine.

Definition at line 128 of file LinearMulticlassMachine.h.

DynArray< TParameter * > * load_all_file_parameters ( int32_t  file_version,
int32_t  current_version,
CSerializableFile file,
const char *  prefix = "" 
)
inherited

maps all parameters of this instance to the provided file version and loads all parameter data from the file into an array, which is sorted (basically calls load_file_parameter(...) for all parameters and puts all results into a sorted array)

Parameters
file_versionparameter version of the file
current_versionversion from which mapping begins (you want to use Version::get_version_parameter() for this in most cases)
filefile to load from
prefixprefix for members
Returns
(sorted) array of created TParameter instances with file data

Definition at line 648 of file SGObject.cpp.

DynArray< TParameter * > * load_file_parameters ( const SGParamInfo param_info,
int32_t  file_version,
CSerializableFile file,
const char *  prefix = "" 
)
inherited

loads some specified parameters from a file with a specified version The provided parameter info has a version which is recursively mapped until the file parameter version is reached. Note that there may be possibly multiple parameters in the mapping, therefore, a set of TParameter instances is returned

Parameters
param_infoinformation of parameter
file_versionparameter version of the file, must be <= provided parameter version
filefile to load from
prefixprefix for members
Returns
new array with TParameter instances with the attached data

Definition at line 489 of file SGObject.cpp.

bool load_serializable ( CSerializableFile file,
const char *  prefix = "",
int32_t  param_version = Version::get_version_parameter() 
)
virtualinherited

Load this object from file. If it will fail (returning FALSE) then this object will contain inconsistent data and should not be used!

Parameters
filewhere to load from
prefixprefix for members
param_version(optional) a parameter version different to (this is mainly for testing, better do not use)
Returns
TRUE if done, otherwise FALSE

Definition at line 320 of file SGObject.cpp.

void load_serializable_post ( ) throw (ShogunException)
protectedvirtualinherited

Can (optionally) be overridden to post-initialize some member variables which are not PARAMETER::ADD'ed. Make sure that at first the overridden method BASE_CLASS::LOAD_SERIALIZABLE_POST is called.

Exceptions
ShogunExceptionWill be thrown if an error occurres.

Reimplemented in CKernel, CWeightedDegreePositionStringKernel, CList, CAlphabet, CLinearHMM, CGaussianKernel, CInverseMultiQuadricKernel, CCircularKernel, and CExponentialKernel.

Definition at line 1004 of file SGObject.cpp.

void load_serializable_pre ( ) throw (ShogunException)
protectedvirtualinherited

Can (optionally) be overridden to pre-initialize some member variables which are not PARAMETER::ADD'ed. Make sure that at first the overridden method BASE_CLASS::LOAD_SERIALIZABLE_PRE is called.

Exceptions
ShogunExceptionWill be thrown if an error occurres.

Reimplemented in CDynamicArray< T >, CDynamicArray< float64_t >, CDynamicArray< float32_t >, CDynamicArray< int32_t >, CDynamicArray< char >, CDynamicArray< bool >, and CDynamicObjectArray.

Definition at line 999 of file SGObject.cpp.

void map_parameters ( DynArray< TParameter * > *  param_base,
int32_t &  base_version,
DynArray< const SGParamInfo * > *  target_param_infos 
)
inherited

Takes a set of TParameter instances (base) with a certain version and a set of target parameter infos and recursively maps the base level wise to the current version using CSGObject::migrate(...). The base is replaced. After this call, the base version containing parameters should be of same version/type as the initial target parameter infos. Note for this to work, the migrate methods and all the internal parameter mappings have to match

Parameters
param_baseset of TParameter instances that are mapped to the provided target parameter infos
base_versionversion of the parameter base
target_param_infosset of SGParamInfo instances that specify the target parameter base

Definition at line 686 of file SGObject.cpp.

TParameter * migrate ( DynArray< TParameter * > *  param_base,
const SGParamInfo target 
)
protectedvirtualinherited

creates a new TParameter instance, which contains migrated data from the version that is provided. The provided parameter data base is used for migration, this base is a collection of all parameter data of the previous version. Migration is done FROM the data in param_base TO the provided param info Migration is always one version step. Method has to be implemented in subclasses, if no match is found, base method has to be called.

If there is an element in the param_base which equals the target, a copy of the element is returned. This represents the case when nothing has changed and therefore, the migrate method is not overloaded in a subclass

Parameters
param_baseset of TParameter instances to use for migration
targetparameter info for the resulting TParameter
Returns
a new TParameter instance with migrated data from the base of the type which is specified by the target parameter

Definition at line 893 of file SGObject.cpp.

SGMatrix< float64_t > obtain_regularizer_matrix ( ) const
protectedvirtual

obtain regularizer (w0) matrix

Reimplemented from CMulticlassLibLinear.

Definition at line 91 of file DomainAdaptationMulticlassLibLinear.cpp.

void one_to_one_migration_prepare ( DynArray< TParameter * > *  param_base,
const SGParamInfo target,
TParameter *&  replacement,
TParameter *&  to_migrate,
char *  old_name = NULL 
)
protectedvirtualinherited

This method prepares everything for a one-to-one parameter migration. One to one here means that only ONE element of the parameter base is needed for the migration (the one with the same name as the target). Data is allocated for the target (in the type as provided in the target SGParamInfo), and a corresponding new TParameter instance is written to replacement. The to_migrate pointer points to the single needed TParameter instance needed for migration. If a name change happened, the old name may be specified by old_name. In addition, the m_delete_data flag of to_migrate is set to true. So if you want to migrate data, the only thing to do after this call is converting the data in the m_parameter fields. If unsure how to use - have a look into an example for this. (base_migration_type_conversion.cpp for example)

Parameters
param_baseset of TParameter instances to use for migration
targetparameter info for the resulting TParameter
replacement(used as output) here the TParameter instance which is returned by migration is created into
to_migratethe only source that is used for migration
old_namewith this parameter, a name change may be specified

Definition at line 833 of file SGObject.cpp.

bool parameter_hash_changed ( )
virtualinherited
Returns
whether parameter combination has changed since last update

Definition at line 209 of file SGObject.cpp.

virtual void post_lock ( CLabels labs,
CFeatures features 
)
virtualinherited

post lock

Reimplemented in CMultitaskLinearMachine.

Definition at line 285 of file Machine.h.

void print_modsel_params ( )
inherited

prints all parameter registered for model selection and their type

Definition at line 1053 of file SGObject.cpp.

void print_serializable ( const char *  prefix = "")
virtualinherited

prints registered parameters out

Parameters
prefixprefix for members

Definition at line 255 of file SGObject.cpp.

virtual void remove_machine_subset ( )
protectedvirtualinherited

deletes any subset set to the features of the machine

Implements CMulticlassMachine.

Definition at line 160 of file LinearMulticlassMachine.h.

void reset_train_state ( )
inherited

reset train state

Definition at line 131 of file MulticlassLibLinear.h.

bool save_serializable ( CSerializableFile file,
const char *  prefix = "",
int32_t  param_version = Version::get_version_parameter() 
)
virtualinherited

Save this object to file.

Parameters
filewhere to save the object; will be closed during returning if PREFIX is an empty string.
prefixprefix for members
param_version(optional) a parameter version different to (this is mainly for testing, better do not use)
Returns
TRUE if done, otherwise FALSE

Definition at line 261 of file SGObject.cpp.

void save_serializable_post ( ) throw (ShogunException)
protectedvirtualinherited

Can (optionally) be overridden to post-initialize some member variables which are not PARAMETER::ADD'ed. Make sure that at first the overridden method BASE_CLASS::SAVE_SERIALIZABLE_POST is called.

Exceptions
ShogunExceptionWill be thrown if an error occurres.

Reimplemented in CKernel.

Definition at line 1014 of file SGObject.cpp.

void save_serializable_pre ( ) throw (ShogunException)
protectedvirtualinherited

Can (optionally) be overridden to pre-initialize some member variables which are not PARAMETER::ADD'ed. Make sure that at first the overridden method BASE_CLASS::SAVE_SERIALIZABLE_PRE is called.

Exceptions
ShogunExceptionWill be thrown if an error occurres.

Reimplemented in CKernel, CDynamicArray< T >, CDynamicArray< float64_t >, CDynamicArray< float32_t >, CDynamicArray< int32_t >, CDynamicArray< char >, CDynamicArray< bool >, and CDynamicObjectArray.

Definition at line 1009 of file SGObject.cpp.

void set_C ( float64_t  C)
inherited

set C

Parameters
CC value

Definition at line 64 of file MulticlassLibLinear.h.

void set_epsilon ( float64_t  epsilon)
inherited

set epsilon

Parameters
epsilonepsilon value

Definition at line 77 of file MulticlassLibLinear.h.

void set_features ( CDotFeatures f)
inherited

set features

Parameters
ffeatures

Definition at line 69 of file LinearMulticlassMachine.h.

void set_generic< complex128_t > ( )
inherited

set generic type to T

Definition at line 38 of file SGObject.cpp.

void set_global_io ( SGIO io)
inherited

set the io object

Parameters
ioio object to use

Definition at line 176 of file SGObject.cpp.

void set_global_parallel ( Parallel parallel)
inherited

set the parallel object

Parameters
parallelparallel object to use

Definition at line 189 of file SGObject.cpp.

void set_global_version ( Version version)
inherited

set the version object

Parameters
versionversion object to use

Definition at line 230 of file SGObject.cpp.

void set_labels ( CLabels lab)
virtualinherited

set labels

Parameters
lablabels

Reimplemented from CMachine.

Definition at line 52 of file MulticlassMachine.cpp.

bool set_machine ( int32_t  num,
CMachine machine 
)
inherited

set machine

Parameters
numindex of machine
machinemachine to set
Returns
if setting was successful

Definition at line 59 of file MulticlassMachine.h.

void set_max_iter ( int32_t  max_iter)
inherited

set max iter

Parameters
max_itermax iter value

Definition at line 120 of file MulticlassLibLinear.h.

void set_max_train_time ( float64_t  t)
inherited

set maximum training time

Parameters
tmaximimum training time

Definition at line 90 of file Machine.cpp.

void set_prob_heuris ( EProbHeuristicType  prob_heuris)
inherited

set prob output heuristic of multiclass strategy

Parameters
prob_heuristype of probability heuristic

Definition at line 153 of file MulticlassMachine.h.

void set_rejection_strategy ( CRejectionStrategy rejection_strategy)
inherited

sets rejection strategy

Parameters
rejection_strategyrejection strategy to be set

Definition at line 133 of file MulticlassMachine.h.

void set_save_train_state ( bool  save_train_state)
inherited

set save train state

Parameters
save_train_statesave train state value

Definition at line 105 of file MulticlassLibLinear.h.

void set_solver_type ( ESolverType  st)
inherited

set solver type

Parameters
stsolver type

Definition at line 105 of file Machine.cpp.

void set_source_bias ( float64_t  source_bias)

setter for source bias

Parameters
source_biassource bias

Definition at line 48 of file DomainAdaptationMulticlassLibLinear.cpp.

void set_source_machine ( CLinearMulticlassMachine source_machine)

setter for source machine

Parameters
source_machinesource machine

Definition at line 69 of file DomainAdaptationMulticlassLibLinear.cpp.

void set_store_model_features ( bool  store_model)
virtualinherited

Setter for store-model-features-after-training flag

Parameters
store_modelwhether model should be stored after training

Definition at line 115 of file Machine.cpp.

void set_train_factor ( float64_t  train_factor)

setter for train factor

Parameters
train_factortrain factor

Definition at line 58 of file DomainAdaptationMulticlassLibLinear.cpp.

void set_use_bias ( bool  use_bias)
inherited

set use bias

Parameters
use_biasuse_bias value

Definition at line 90 of file MulticlassLibLinear.h.

CSGObject * shallow_copy ( ) const
virtualinherited

A shallow copy. All the SGObject instance variables will be simply assigned and SG_REF-ed.

Reimplemented in CGaussianKernel.

Definition at line 140 of file SGObject.cpp.

virtual void store_model_features ( )
protectedvirtualinherited

Stores feature data of underlying model. Does nothing because Linear machines store the normal vector of the separating hyperplane and therefore the model anyway

Reimplemented from CMachine.

Definition at line 171 of file LinearMulticlassMachine.h.

virtual bool supports_locking ( ) const
virtualinherited
Returns
whether this machine supports locking

Reimplemented in CKernelMachine, and CMultitaskLinearMachine.

Definition at line 291 of file Machine.h.

bool train ( CFeatures data = NULL)
virtualinherited

train machine

Parameters
datatraining data (parameter can be avoided if distance or kernel-based classifiers are used and distance/kernels are initialized with train data). If flag is set, model features will be stored after training.
Returns
whether training was successful

Reimplemented in CRelaxedTree, CAutoencoder, CSGDQN, and COnlineSVMSGD.

Definition at line 47 of file Machine.cpp.

virtual bool train_locked ( SGVector< index_t indices)
virtualinherited

Trains a locked machine on a set of indices. Error if machine is not locked

NOT IMPLEMENTED

Parameters
indicesindex vector (of locked features) that is used for training
Returns
whether training was successful

Reimplemented in CKernelMachine, and CMultitaskLinearMachine.

Definition at line 237 of file Machine.h.

bool train_machine ( CFeatures data = NULL)
protectedvirtualinherited

train machine

Reimplemented from CMulticlassMachine.

Definition at line 92 of file MulticlassLibLinear.cpp.

virtual bool train_require_labels ( ) const
protectedvirtualinherited

returns whether machine require labels for training

Reimplemented in COnlineLinearMachine, CHierarchical, CLinearLatentMachine, CVwConditionalProbabilityTree, CConditionalProbabilityTree, and CLibSVMOneClass.

Definition at line 352 of file Machine.h.

void unset_generic ( )
inherited

unset generic type

this has to be called in classes specializing a template class

Definition at line 250 of file SGObject.cpp.

void update_parameter_hash ( )
virtualinherited

Updates the hash of current parameter combination

Definition at line 196 of file SGObject.cpp.

Member Data Documentation

SGIO* io
inherited

io

Definition at line 461 of file SGObject.h.

float64_t m_C
protectedinherited

regularization constant for each machine

Definition at line 164 of file MulticlassLibLinear.h.

bool m_data_locked
protectedinherited

whether data is locked

Definition at line 368 of file Machine.h.

float64_t m_epsilon
protectedinherited

tolerance

Definition at line 167 of file MulticlassLibLinear.h.

CDotFeatures* m_features
protectedinherited

features

Definition at line 176 of file LinearMulticlassMachine.h.

Parameter* m_gradient_parameters
inherited

parameters wrt which we can compute gradients

Definition at line 476 of file SGObject.h.

uint32_t m_hash
inherited

Hash of parameter values

Definition at line 482 of file SGObject.h.

CLabels* m_labels
protectedinherited

labels

Definition at line 359 of file Machine.h.

CMachine* m_machine
protectedinherited

machine

Definition at line 208 of file MulticlassMachine.h.

CDynamicObjectArray* m_machines
protectedinherited

machines

Definition at line 56 of file BaseMulticlassMachine.h.

int32_t m_max_iter
protectedinherited

max number of iterations

Definition at line 170 of file MulticlassLibLinear.h.

float64_t m_max_train_time
protectedinherited

maximum training time

Definition at line 356 of file Machine.h.

Parameter* m_model_selection_parameters
inherited

model selection parameters

Definition at line 473 of file SGObject.h.

CMulticlassStrategy* m_multiclass_strategy
protectedinherited

type of multiclass strategy

Definition at line 205 of file MulticlassMachine.h.

ParameterMap* m_parameter_map
inherited

map for different parameter versions

Definition at line 479 of file SGObject.h.

Parameter* m_parameters
inherited

parameters

Definition at line 470 of file SGObject.h.

bool m_save_train_state
protectedinherited

save train state

Definition at line 176 of file MulticlassLibLinear.h.

ESolverType m_solver_type
protectedinherited

solver type

Definition at line 362 of file Machine.h.

float64_t m_source_bias
protected

source bias

Definition at line 97 of file DomainAdaptationMulticlassLibLinear.h.

CLinearMulticlassMachine* m_source_machine
protected

source domain machine

Definition at line 100 of file DomainAdaptationMulticlassLibLinear.h.

bool m_store_model_features
protectedinherited

whether model features should be stored after training

Definition at line 365 of file Machine.h.

float64_t m_train_factor
protected

train factor

Definition at line 94 of file DomainAdaptationMulticlassLibLinear.h.

mcsvm_state* m_train_state
protectedinherited

solver state

Definition at line 179 of file MulticlassLibLinear.h.

bool m_use_bias
protectedinherited

use bias

Definition at line 173 of file MulticlassLibLinear.h.

Parallel* parallel
inherited

parallel

Definition at line 464 of file SGObject.h.

Version* version
inherited

version

Definition at line 467 of file SGObject.h.


The documentation for this class was generated from the following files:

SHOGUN Machine Learning Toolbox - Documentation